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SUMMARY 

An analysis is presented for fully developed heat transfer for laminar flow of a 
power-law non-Newtonian fluid in a circular tube with arbitrary circumferential wall 
temperature or heat flux. The results allow calculation of temperature o r  wall heat- 
flux variations for various velocity profiles when the tube has a uniform axial heat input 
and an arbitrary peripheral wall-temperature or heat-flux variation. The circumferen- 
tial variation of Nusselt modkus with respect to these temperature or  heat-flux varia- 
tions and velocity profiles is shown. It is found that heat-transfer analyses based on the 
assumption of a parabolic velocity distribution will introduce serious e r rors  when the 
fluid exhibits a nonlinear shearing-stress - shearing-rate relation, so that the actual 
behavior of the velocity profile must be considered. 

I NTRO DUCT ION 

* 

a circular tube with longitudinally uniform o r  varying wall temperature or  heat flux has 
been pursued by analytical methods over a long period of time. 
ferentially varying wall temperature o r  heat flux, of special interest in nuclear reactor 
and heat-exchanger applications, has, on the other hand, been studied only recently. 
The case of heat transfer to laminar Poiseuille flow in a tube with arbitrary circumfer- 
ential heat flux has been considered in reference 1. 
fer  in a tube with variable circumferential heat flux has been treated in reference 2. 
Heat transfer to turbulent flow in a tube with circumferentially varying temperature has 
been considered in reference 3. 

The desire to make heat-exchange equipment compact and to increase the amount of 
heat transferred per unit of pumping power frequently lead the design engineer to con- 

The study of heat-transfer problems for fully developed laminar or turbulent flow in 

The situation of circum- 

The problem of turbulent heat trans- 



sider passage sizes such that the equipment operates well into the laminar-flow region. 
Laminar-flow considerations, therefore, remain of considerable practical interest. 
Many problems that occur in physical situations, moreover, involve a velocity distribu- 
tion other than that of a parabolic shape (Poiseuille flow). A few examples are the flow 
of nuclear fuel slurries, the flow of liquid metals, and the flow of confined plasmas. It 
is desirable, therefore, to extend the analyses of references 1 to 3 to include other pos- 
sible laminar velocity-distribution profiles. 

non-Newtonian flow in a round tube with constant axial heat input but variable circumfer- 
ential wall temperature or heat flux. The Newtonian fluid is a fluid for which the dia- 
gram relating shear s t ress  and rate of shear, the so-called flow curve, is a straight 
line of slope p, where p is the Newtonian viscosity. The single constant p completely 
characterizes the Newtonian fluid. 

Non-Newtonian fluids a r e  those for which the flow curve is not linear, that is, the 
viscosity is not constant but depends on a factor such as the rate of shear in the fluid. 
The logarithmic plot of shear s t ress  and rate of shear for these fluids is often found to 
be linear. As 'a  result, a functional relation defined as the power law is used to charac- 
terize fluids of this type. 

the velocity distribution on the heat-transfer results. 
energy equation involves the velocity distribution, the first step in the analysis is to 
specify the velocity variation over the tube cross section. The power-law model, which 
has found widespread use as an approximate representation of pseudoplastic rheology, is 
considered in the present analysis. The velocity profile of steady non-Newtonian power- 
law fluids in circular tubes has been treated in reference 4, and the results a re  used in 
the present investigation. With the velocity distribution specified, the energy equation 
can be considered. 

In the first part  of the present work, the heat transfer to fully developed tube flow 
with arbitrary circumferential wall temperature is considered following the method of 
Sparrow and Lin (ref. 3). In the second part, the heat transfer to fully developed tube 
flow with arbitrary circumferential wall heat flux is considered by utilizing the method 
of analysis of Reynolds (ref. 1). Throughout the analyses, the flow is assumed ther- 
mally fully developed, the heat flux is taken as uniform in the axial direction, viscous 
dissipation and axial conduction a r e  neglected, and fluid properties a r e  assumed con- 
stant. 

The present investigation is concerned with the fully developed laminar power-law 

The results of this investigation should provide some insight into the influence of 
Since the convective term in the 

The study is divided into two parts. 

These idealizations a r e  familiar ones and require no discussion. 

VARIABLE CIRCUMFERENTIAL WALL TEMPERATURE 
There is considered a tube flow along which there is a uniform heat-transfer rate 
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per unit length Q. 
tw is allowed to vary around the circumference in an arbitrary manner as given by the 
Fourier expansion (ref. 3) 

(Symbols a r e  defined in the appendix.) The tube wall temperature 

= an cos ncp -1- bnsin ncp 
n= 1 

k 

in which 
the circumferentially averaged wall temperature at a given axial position. 

with fully established velocity and temperature profiles 

is the average heat-flux rate per unit heated area (ij = Q/2sr0) and fw is 

The starting point of the analysis is the energy equation for convective heat transfer 

u at a2t 1 at  1 a2t  -- +--+--  
a ax ar2 r ar r2  ap2 

The fully developed heat-transfer condition for a uniform wall heat flux independent 
of x is characterized by the fact that the temperature profile is similar in shape for all 
values of x, and the temperature values r ise  in a linear fashion in the longitudinal direc- 
tion. Therefore, the temperature gradient at/ax, a constant, is given by 

a t  - 2q - -  ax Pc iir 
P O  

Dimensionless radial distance, 7 

Figure 1. - Velocity distribution in circular tube. 

where S is taken as positive from wall to 
fluid. 

(ref. 4) 
The velocity distribution is given by 

where m is a constant for a particular 
fluid; m is a measure of the degree of non- 
Newtonian behavior, and the greater the de- 
parture from 2 the more pronounced a r e  the 
non-Newtonian properties. For m > - 2, the 
fluid is termed a pseudoplastic fluid. The 
power-law equation is also often applicable for 
dilatant fluids (ref. 4), but in this case the 
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velocity parameter m is less than 2 (1 < - -  m < 2). The Poiseuille flow is represented 
by m = 2, while m - 00 yields slug flow. Distributions as a function of m a r e  shown 
in figure 1. 

Equation (2), written in terms of dimensionless variables, then becomes 

This equation is to be solved subject to appropriate boundary conditions. The solution 
of equation (5) for T can be written as (ref. 3) 

The functions ~ ~ ( 7 7 )  and Hn(r]) a r e  determined by substituting equation (6) into equa- 
tion (5) and then evaluating the result such that 

2 

(1 - rim) 'd 1 dTd 2(m + 2) +---  - 
dq2 r] dr] m 

2 
d2Hn +- - - -  1dHn n 2 H n = 0  
dq2 r] dr] r] 

The function T ~ ,  which is the fully developed temperature solution for axisymmetric 
heating, is the solution to equation (7) subject to the boundary conditions 

-- 'd - 0 at r] = 0 (symmetry) 
dr] 

T~ = 0 at r] = 1 (specified wall  temperature distribution, eq. (1)) 

The function Hn(r]) is the solution to equation (8) subject to the boundary conditions 

Hn(0) = 0 (angular symmetry) 
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Hn( 1) = 1 (specified wall temperature distribution, eq. (1)) 

The functions ~ ~ ( 7 7 )  and Hn(q) are readily found to be, respectively, 

Now that T~ and Hn are known, they can be substituted into equation (6) to obtain the 
complete solution for the temperature distribution in the tube, which is 

m + 2  2 2 p1+2 
7 7 -  d77, 54 = 2m m(m + 2) 

60 120 180 

00 

- (m + 212 - 4 
2m(m + 2) 

+ $(a, cos ncp + bn sin ncp) 
n= 1 

(a) Velocity parameter, 1. 

0 60 I 180 
Angular position, 9, d q  

(b) Velocity parameter, 2. 

0 60 120 180 

(c) Velocity parameter, m. 

Figure2. - Illustrative circumferential variations of fluid temperatures corresponding to wall-temperature variation 
(tw - tw)/(tiro/k) = 0.5 cos 'P. 
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To illustrate the results, temperature profiles are plotted as a function of angular 
position 'p at various radial locations q in figure 2 for an illustrative case where 
al = 0. 5, an = 0 for n = 2, 3, . . ., and bn = 0 for n = 1, 2, . . . . The values of m 

represented a r e  m = 1,2, and m. In figure 2(a) m = 1 represents a linear velocity pro- 
file; m = 2 corresponds to Poiseuille flow (fig. 2(b)); and m - m represents slug flow 
(fig. 2(c)). The angular variations of temperature, at a given radial location, a r e  very 
nearly the same for the three values of m represented. At a given angular position, 
however, the radial variation of temperature is greatest for m = 1 and least for m -c m. 

At the tube centerline q = 0, the temperature distribution, as expected, is independent 
of angular location. Also shown in figure 2 a re  curves for a uniform, or axisymmetric, 
wall-temperature distribution. As noted in the previous example, the radial variations 
of temperature a r e  greatest for m = 1 and least for m - 00. 
necessary to know the fluid bulk temperature $, and the local wall heat flux q(q). The 
fluid bulk temperature is obtained as follows: 

In order to determine the local heat-transfer coefficient, o r  Nusselt number, it is 

t b 2 -  = 
j2'Lro utr dr  dcp 

arOu 0 

Equation (12) may be written in dimensionless form as 

When equation (ll), in addition to equation (4), is used to evaluate the integrals of 
equation (13), the cosine and sine terms all drop out in the integration over 'p. The re- 
maining terms may be readily integrated to yield 

It is convenient to define the right side of equation (14a) as -2f(m), that is, as a function 
of the parameter m, so that 

Tb = - Wm) (14b) 

The wall- to bulk-temperature difference tw('p) - tb is determined by combining 
equations (1) and (14) to yield 
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03 

= 2f(m) + an cos ncp + b n sin ncp (15) 
n= 1 

Equation (15) has been plotted in figure 3 
1.0 as a function of the parameters cp and m for 

c the previously mentioned illustrative case, 
namely, [tW(cp) - rwj/(aro/k) = O. 5 cos cp. 
Note that the wall- to bulk-temperature d i f -  
ference varies substantially around the pe- 

temperature difference becomes zero when the 
bulk temperature of the fluid is equal to the 
wall  temperature. Since the Nusselt number 
is inversely proportional to the wall- to bulk- 
temperature difference, infinities in the 
Nusselt number will occur when the differences 

.- 
'CIA 
a)* L- 

C L  3 0  m l u  .5 
k K  
E 3  
4 3 
n .,,- 0 
c r y  o u  riphery of the tube. The wall- to bulk- 
L E  
m E  

0 ) I  c 

3 

- 

180 
= -.5 

0 60 120 
Angular position, Y), deg 

Figure 3. - Variation of wall- to bulk-temperature 
difference-for prescribed wall-temperature varia- 
t i on  (t, - tw)/(ijro/k) = 0.5 cos 'p. 

a r e  zero. 
The local wall heat flux can be evaluated from Fourier's law 

or, in terms of dimensionless variables T and 7, 

Applying this to equation (11) gives the result for the variation of wall heat flux with cp 
as 

03 

= 1 + n(an cos ncp + bn sin ncp) 
n= 1 q 
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Figure 4. - I l lustrat ive heat- f lux variation around 
tube periphery for given circumferent ia l  wall- 
temperature variation. 

It is interesting to note that q/2  is independent 
of the velocity field. 

tion around the tube circumference, as given by 
equation (17), for tube wall-temperature varia- 
tions [tw(cp) - tw]/(qr0/k) = 0, 0.5 cos cp, and 

Figure 4 illustrates the wall heat-flux varia- 

1.0 cos $0. 

Now that the wall- to bulk-temperature dif- 
ference tw - $, and the wall heat flux q are 
known, the variation of the heat-transfer coef- 
ficient, or the Nusselt number, can be deter- 
mined. 

Nu may be defined as 
A circumferentially averaged Nusselt number - 

When equation (14) is used, the average Nusselt number is determined as 

A circumferentially 

1 - 
NU=- 

f ( m) 

varying Nusselt number Nu(cp) may be defined as 

Substituting q(g0) from equation (17) and tw(cp) - $, from equation (15) gives the Nusselt 
modulus Nu(cp) as 

1 +  2 "(an cos ncp + bn sin ncp) 
n= 1 - 

N4cp) = to 

f(m) + -  an cos ncp + bn sin ncp 
2 n=l  
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Figure 5. -Average Nusselt number for laminar flow in 
c i rcu la r  tube. 

\Jeloci& 
-par a meter, 

60 120 180 
Angular position, 'p, deg 

Figure 6. - Local Nusselt modulus variation for 
presciibed wall temperature 
(tw - tw)/(Qro/k) = 0.5 cos 'p. 

It should be noted for an = b = 0, o r  constant circumferential wall  temperature, the 
n- 

Nusselt modulus reduces to Nu. 
The average Nusselt number Nu (eq. (19)), plotted in figure 5 as a function of l/m, 

corresponds to the axisymmetric heat-transfer situation, and hence the average heat- 
transfer performance is equal to the performance for uniform peripheral heat transfer. 
By plotting the average Nusselt number 
locity parameter, the physically interesting velocity profiles a r e  represented by the ab- 
scissa variation 0 < l /m < 1.0. The average Nusselt number is greatest for slug flow 
(m -. 03) and least for a linear velocity profile (m = 1). 

eters cp and m for [tw(cp) - TWyfiro/k) = 0. 5 cos cp and is plotted in figure 6. The 
local Nusselt number, for a given value of m, varies significantly around the tube from 
the uniform heat-flux value shown in figure 5. 
the point where the wall temperature equals the fluid bulk temperature and becomes 
negative when the wall temperature is less  than the bulk temperature. An appreciable 
variation of the heat-transfer coefficient around the tube periphery, therefore, occurs 
for a given value of m, and, hence, it is unsatisfactory to use the average Nusselt num- 
ber %u, or  even the local heat f lux,  together with the heat-transfer coefficient obtained 
from the uniform heat-input solution, to determine the wall-temperature variation 
around the tube periphery. 

is the shape of the velocity profile. Heat-transfer analysis based, therefore, on the 
assumption of a parabolic velocity distribution will introduce serious e r rors  when the 

as a function of the reciprocal of the ve- 

- - 

The local Nusselt number (eq. (21)) has been evaluated as a function of the param- 

The Nusselt number becomes infinite at 

Another factor that can influence the Nusselt number, o r  heat-transfer coefficient, 
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fluid has pronounced non-Newtonian be- 
havior, and the actual behavior of the ve- 
locity profile must be considered in a heat- 
transfer analysis. 

The significant variations in the 
Nusselt number exhibited in figure 6 open 
to question the utility of a heat-transfer 
coefficient under conditions of a variable 

I 
surface temperature. Independent con- 
sideration of equations (15) and (17) may 
prove more useful for a quantitative heat- 
transfer evaluation in this situation. In 
any event, it is clear that both the wall- 
temperature variation and the fluid- 
velocity distribution markedly alter the 
heat-transfer conditions around the tube 71 -e 0 e n 

Figure 7. - T u b e w i t h  un i fo rm heat f l ux  qw over -e<P<e.  Re- 
mainder of boundary insulated. periphery. 

VARIABLE CIRCUMFERENTIAL WALL HEAT FLUX 

The method of analysis follows the approach taken by reference 1 and is as follows: 
First, a solution is obtained for the case of a tube with constant heat flux over a portion 
of its circumference, insulated over the remainder (fig. 7). 
eralized to the situation of arbitrary circumferential variations of wall  heat flux. 

The starting point for the variable circumferential wall  heat-flux problem is also 
the energy conservation equation (eq. (2)), but now an energy balance in the fully de- 
veloped thermal situation produces the result that 

Then the result is gen- 

Equation (2), written in terms of dimensionless variables, becomes 

& 1 aT 1 a2T m 
) + - - + -- = a(1- 77 

2 2  q2 7 a~ 77 acp 

Equation (23) is to be solved subject to the boundary conditions 
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k(E) = O  0 < q < 2 ~ - 0  
r=ro 

where qw is a constant. Written in dimensionless variables, 

The analysis is simplified in the following way. Assume a solution to equation (23) 
of the form 

The functions F and G are determined by substituting equation (25) into equation (23) 
and evaluating the result such that 

The function G(q) is considered first. Equation (27) can be integrated directly; the 
resulting expression for G(q) is 

G(7) = a [< - ~ 17m+2.] + Bo 
m + 2) 

where the boundary condition dG/dy = 0 at 17 = 0 has been used and Bo is a constant 
of integration. 

11 



The function F(q, q), which is the solution to Laplace's equation (eq. (26)), has 
been shown to be of the form (ref. 1) 

F = c o +  2 cnqncos nq 
n= 1 

Combining equations (28) and (29) in accordance with equation (25) yields 

00 

T =  a[(- (qm+2 2] +Do + cnq n cos nq 
m + 2) n= 1 

where the coefficients cn and the constant Do = co + Bo remain to be determined. 

tions, equations (24c) and (24d). Differentiating equation (30) with respect to q and 
substituting the result in equations (24c) and (24d) yield 

The ser ies  expansion coefficients cn are evaluated to satisfy the boundary condi- 

Then, by a Fourier analysis 

and equation (30) takes the form 

T = a  

The remaining unknown, the constant Do, is evaluated such that the mixed mean tem- 
perature $, is given by equation (12). In terms of the temperature difference T, 
equation (12) may be written as 
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dz'L1 (1 - qm)Tq dr] d q  = 0 

Using equation (33) in equation (34) produces the result for Do as 

(34) 

Combining equations (33) and (35) yields the complete distribution for the tempera- 
ture difference T as 

r] sin ne cos 
2 an 

+ 
2 2 

m ( m + 4 )  m 

When the wall heat flux is specified, the wall  temperature is the unknown quantity 
that is usually of most practical interest. The wall-temperature difference Tw can be 
found by evaluating equation (36) at r] = 1 with the result 

(37) sin ne cos ncp 

k 

The term in brackets is equal to f(m), and, hence, equation (37) can be rewritten in a 
more convenient form as 

Equation (38) is the inverse of the local Nusselt number: 

13 
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This is the Nusselt number variation around the heated portion of the tube with a uniform 
heat input over -6 < cp < 6 and insulated over 6 < < 2a - 8. The influence of the 
velocity distribution is felt through the function f(m). 

The foregoing results may be extended to include the arbitrary circumferential wall 
heat flux q ( cp )  by the method presented in reference 1. Since the energy equation is 
linear, a superposition principle can be used to generalize the results obtained for the 
case of a tube with uniform heat flux over a portion of its circumference and insulated 
over the remainder to the case where the circumferential heat flux is arbitrary. Little 
is to be gained by a repetition of the procedure, and, hence, the reader is referred to 
reference 1 for details. 
circumferential heat flux is found as 

- -  

W 

The response in wall-temperature difference for an arbitrary 

d5 
27f 

Equation (40) represents the general solution to the arbitrary circumferential f lux  and 
non-Newtonian velocity-distribution problem. 

For the special case of uniform peripheral heat flux, qw(cp) = q = constant, and 
equation (40) yields 

2@, 
Tw = - f(m) 

k 

and, hence, as expected, the local Nusselt number is given by 

It should be noted that equation (42) is identical to equation (19). This is to be expected, 
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since, as pointed out earlier, equation (19) corresponds to uniform peripheral heat 
transfer, as does equation (42). 

distribution of the form 
There is now considered as an illustrative case a cosine circumferential heat-flux 

Such a flux distribution might be representative of that found in a nuclear reactor. 
Reference 1 has examined how this circumferential heat-flux variation, for various 
values of b, influences the wall temperatures for Poiseuille flow in a tube. 
here in considering equation (43) is to determine the combined influence of circumfer- 
ential heat-flux variation (in particular, that represented by eq. (43)) and velocity dis- 
tribution on the convection process. From equation (40), the wall- temperature distri- 
bution for this heat-flux distribution is given by 

The purpose 

T -"% (1 + b cos () 
, k  

n= 1 

Carrying out the integration gives the result 

(44) 

- 
The average wall-temperature difference T, is obtained by integration of equation (45) 
around the tube periphery: 

Dividing equation (45) by equation (46) yields the ratio of the local wall-temperature dif- 
ference to the average wall-temperature difference as 

The appearance of both the parameter b and the function f(m) in equation (47) indicates 
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Figure 8. - Ratio of local wall-temperature difference 
to average wall-temperature difference for pre- 
scribed heat f lux q(g)/q = 1 + b cos 9. 

that the heat-flux parameter and the - velocity dis- 
tribution influence the ratio Tw(cp)/ Tw. For a 
uniform peripheral heat flux (b = 0), the wall- 
temperature difference is given by equation (41). 
Then, comparing equations (41) and (46) shows 
that 

- 
so  that Tw corresponds to the wall-temperature 
difference for uniform circumferential heat flux. 
Thus, equation (47) represents the variation of 
T, around the tube periphery due to the heat flux 
q = q(1 + b cos cp) compared with the value for a 
uniform circumferential heat flux. 

function of the parameters cp, b, and m. It is 
seen that there is a significant variation of the 
dimensionless wall - te mp eratur e difference 
Tw(cp)/Tw around the tube periphery in the 
presence of a nonuniform peripheral heat flux. 
Increased value of the heat-flux parameter b 
results in increased temperature variation, for a 
given velocity distribution. In addition, the ve- 
locity distribution has a pronounced influence on 

Equation (47) has been plotted in figure 8 as a 

the variation of wall-temperature difference Tw(cp)/%w around the tube for a given 
value of the parameter b. 
the ratio Tw(cp)/Tw at cp = 0' is about 3. 2 for Poiseuille flow (m = 2) but is 5.0 for 
slug flow (m -c m), an increase of 56 percent. 
fluence of circumferential heat-flux variation on wall temperatures can be quite signifi- 
cant, with maximum temperature differences exceeding average temperature differences 
by substantial percentages and (2) the effect of velocity distribution on wall temperatures 
is also of importance, so  that the use of Poiseuille flow results for the estimation of 
wall- temperature variation is not satisfactory when the fluid under consideration ex- 
hibits a high degree of non-Newtonian behavior. 

For a value of the heat-flux parameter b = 1, for example, 

These results indicate that (1) the in- 

The local Nusselt number is obtained readily from its definition given by equa- 
tion (20) as 
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1 + b cos rp 
b f(m) + -  cos rp 
2 

N U ( d  = (49) 

The Nusselt number is infinite at the point where the wall-temperature difference is 
zero, which corresponds to values of rp given by 

The values of the function f(m) as a function of the velocity parameter m a r e  shown in 
figure 9. For a given value of b and m, figure 9 and equation (50) can be used to de- 
termine the peripheral point where the Nusselt number becomes infinite. 

The extreme dimensionless temperature differences that occur at cp = 0’ and 
q = 180’ a r e  shown in figure 10 as functions of the parameters b and m. It is noted 
that, for a given velocity distribution, the temperature ratio is increased as the param- 
eter b is increased. In addition, it is seen that, for a specified value of b, the tem- 
perature ratio likewise is increased as the velocity parameter m is increased. The 
importance of considering the influence of both the heat-flux distribution and the velocity 
distribution on the extreme temperature differences is evident, and serious problems 
could emerge if proper consideration is not given to these combined effects. 

several values of the parameters b and m, and the results a re  plotted in figure 11. 
The local Nusselt number, equation (49), has been evaluated as a function of cp for 

.x 
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E 
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.2c .- 
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Reciprocal of velocity parameter, 1/m 
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Figure 9. - Function f(m) against reciprocal of velocity 0 
parameter. 

Angular 
-position, 

I 1.5 2.0 .5 ! 
Heat-flux parameter, b 

Figure 10. - Maximum wall-temperature dif- 
ferences. 
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0 60 120 180 
Angular position, 9, deg 

Figure 11. - Local Nusselt modulus variation for 
prescribed wall heat flux q(Y) = ij(1 + b cos 9). 

It is seen that, for a given velocity distribution, the Nusselt modulus, and, hence, the 
heat-transfer coefficient, varies significantly around the tube periphery for the cosine 
circumferential heat-flux distribution. For a given value of the heat-flux parameter b, 
moreover, the velocity distribution markedly effects the heat-transfer coefficient at all 
peripheral locations. These results point out once more the importance of considering 
the influence of the velocity profile, or the degree of the non-Newtonian behavior of the 
fluid, on the heat-transfer coefficient. 

CONCLUDING REMARKS 

A n  analysis has been carried out to evaluate the effects of velocity distribution on 
fully developed laminar heat transfer in a circular tube with a prescribed wall tempera- 
ture or  wall heat flux. 

If, in a specific heat-transfer problem, the velocity profile is determined, it may 
be matched to the profiles as shown in figure 1 (p. 3), and the velocity parameter 
determined. For any given value of m, quantities of engineering interest such as wall 
temperature, wall heat flux, and Nusselt modulus variations around the tube periphery 
can be calculated. 

The influence of the velocity distribution has been demonstrated by evaluating a few 
illustrative numerical examples, which indicate that the influence of circumferential 
wall-temperature variation on wall heat fluxes and heat-flux variation on wall tempera- 
tures can be significant. In addition, it is found that the degree of non-Newtonian be- 

m 
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havior of the flowing fluid, characterized by the value of the velocity parameter m, has 
an important influence on these quantities, which means that, under these circumstances, 
the use of Poiseuille flow results (m = 2) for the estimation of peripheral wall tempera- 
ture distributions is not satisfactory. 

In the examples illustrated herein, infinities and zeros occur in the Nusselt num- 
bers. The Nusselt numbers become infinite when the bulk mean temperature of the 
fluid is equal to the appropriate wall temperature. 
change in the direction of the heat transfer at that angular position of the tube wall. 
occurrence of negative, zero, and infinite values of the heat-transfer coefficient about 
the tube periphery suggests that the Nusselt modulus is of little use when the circumfer- 
ential wall temperature or heat flux is variable. 

temperature or wall  heat-flux variations (refs. 5 and 6). 
sent the extreme cases where the wall heat conduction is negligible compared with the 
convective heat transfer within the fluid, and the use of the present results should lead 
to a conservative design of heat-exchange equipment. 

Zero Nusselt numbers indicate a 
The 

Wall-conduction effects will be expected to moderate, to some extent, the wall 
The results given here repre- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 12, 1964. 
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APPENDIX - SYMBOLS 

dimensionless parameter, 

m k n  
Fourier coefficients of eq. (1) 

heat-flux parameter given by 
eq. (43) 

Fourier coefficients of eq. (1) 

Fourier coefficients of eq. (29) 

heat capacity at  constant pres- 
sur e 

functionof and cp for 
variable circumferential 
heat-flux problem given by 

eq. (25) 

eq. (14) 
function of m given by 

function of for variable 
circumferential heat-flux 
problem given by eq. (25) 

radial distribution function for 
variable circumferential 
wall-temperature problem 
given by eq. (6) 

fluid thermal conductivity 

velocity profile parameter de- 
fined by eq. (4) 

local Nusselt number, 

q(d(2r0)/kEw cp)  - &I 
circumferentially averaged 

Nuss el t number , 
- 
q(2ro)/k6w - tb> 

heat-transfer rate per unit 
1 ength 

local heat flux 

average heat-flux rate per 
unit heated area 

average heat flux rate a t  wall 
over -8 < - -  cp < 8 

radial coordinate 

tube radius 

temperature difference for 
variable circumferential 
heat flux, t - tb 

wall- to bulk-temperature dif-  
ference for variable circum- 
f erential heat flux, 
tw(P) - tb 

average wall- to bulk- 
temperature difference for 
circumferential heat flux, - 

tw - tb 
fluid temperature 

velocity 

axial coordinate 

thermal diffusivity, k/pc 
P 

dimensionless coordinate, 

r h o  

half angle of heated tube seg- 
ment 

dummy integration variable 

20 



P fluid density C centerline 

r dimensionless temperature dif- d axisymmetric heating condi- 
ference for variable circum- tion 
ferential wall temperature, 
(t - TW)/"/k) W wall  

cp angular coordinate, deg 

Subscripts: 

b fluid bulk condition 

Superscript: 

(7 average value 

21 
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